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1 Introduction

In theory, FDI can provide an important source of capital, technology, and other productivity elements

that are important for economic growth, but are otherwise lacking because of insufficient domestic

investment (Borensztein, De Gregorio & Lee 1998). In theory, also, FDI can reduce or have no effect on

economic growth. Consequently, a large strand of literature has been devoted to analyzing the nature

of the effect of FDI on economic growth across countries.1 However, knowledge of only the effect of

FDI on growth may be insufficient to derive useful policy prescriptions on the relationship between

these two variables. Useful policy prescriptions may be better derived from analyses on the (joint)

interaction between FDI and growth; such general analyses lend themselves to answering questions

such as whether countries experience (i) growth-FDI symbiosis – a positive effect of FDI on growth

and a positive effect of growth on FDI, or (ii) FDI-commensalism – a positive effect of FDI on growth

but no effect of growth on FDI. More important, the type of interaction between FDI and economic

growth can shed light on the existence of direct multiplier benefits stemming from increases in either

FDI or economic growth.

In this paper, we characterize the types of interactions between FDI and economic growth, and

analyze the effect of institutional quality on such interactions. To do this analysis, we propose a

semiparametric panel model of a system of simultaneous equations that allows FDI and economic

growth to be modeled simultaneously and uses instrumental variables to identify causal effects. Our

model is semiparametric – that is, we represent the coefficients on all regressors in all equations as

unknown smooth functions of a measure of institutional quality, and unobserved country- and year-

specific factors (fixed effects) – for a few reasons. One, we adopt the view that substantial linear

and nonlinear forms of parameter heterogeneity that stem from, among other sources, cross-country

differences in institutional quality, exist in empirical growth models (see, for e.g., Durlauf 2001, Minier

2007, Durlauf, Kourtellos & Tan 2008, Huynh & Jacho-Chávez 2009a, Huynh & Jacho-Chávez 2009b),

and in particular in the effect of FDI on economic growth (see, for e.g., Borensztein et al. 1998, Alfaro

et al. 2004, Durham 2004, Papaioannou 2009, Kottaridi & Stengos 2010, Delgado et al. 2014, McCloud

& Kumbhakar 2012). Thus, we do not assume a priori that all countries use identical technologies

to produce goods and services. In a recent review of the FDI literature, Alfaro & Johnson (2013)

emphasize the importance of incorporating measures of institutional quality into empirical models of

FDI and growth. Moreover, and although highly possible, the existence of parameter heterogeneity in

empirical FDI models has not been considered in the literature. Two, unlike standard panel models,

we abstract from the use of neutral (“proper” or additively separable) fixed effects and incorporate

non-neutral fixed effects to reflect the presence of unobserved parameter heterogeneities that may

influence the FDI and growth equations in many ways beyond a simple translation of each equation.

For example, changes in FDI inflows within a firm may lead to changes in input composition of the

production process and organizational structure, which are likely to be associated with changes in

economic growth.2

1See, for example, Balasubramanyam, Salisu & Sapsford (1996), Borensztein et al. (1998), Alfaro, Chanda, Kalemli-
Ozcan & Sayek (2004), Durham (2004), Carkovic & Levine (2005), Kottaridi & Stengos (2010), Delgado, McCloud &
Kumbhakar (2014) and McCloud & Kumbhakar (2012), and the relevant references cited therein. See, also, Alfaro &
Johnson (2013) for an excellent review.

2In essence, our empirical specification can be viewed as a mixture of the standard parametric system of equations
model of FDI and growth used by Li & Liu (2005), and the semiparametric smooth varying coefficient growth model used
by Delgado et al. (2014). Note that the system model of Li & Liu (2005) was fully parametric, and, more important, (i)
assumed that, by virtue of parameter homogeneity, the interaction between economic growth is the same across countries
and (ii) did not control for country- and time-specific effects. The model used by Delgado et al. (2014) was restricted to
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Semiparametric system of equations estimation is still in its infancy (Welsh & Yee 2006, Henderson,

Kumbhakar, Li & Parmeter 2015), and has not been used in any empirical economic studies of which

we are aware. In the absence of a conditional distributional assumption on the response vector given

the set of covariates, we opt to use the generalized method of moments (GMM) approach by Hansen

(1982) to estimate our system of equations. The general unspecified form of our coefficient functions

precludes estimation of our system with parametric GMM estimation. The estimators of the unknown

coefficient functions, however, can be obtained using nonparametric GMM methods. In comparison

to the literature on GMM and parametric systems of simultaneous equations, relatively little is known

about using the GMM approach to estimate semiparametric systems of simultaneous equations and

the asymptotic properties of the resultant estimators. To fill this gap in the literature, we therefore

derive a broad class of local-linear GMM estimators – by coupling the GMM approach with local-linear

estimation (see, e.g., Fan & Gijbels 1996) and the nonparametric system of equations symmetrical

kernel-weighting approach in Welsh & Yee (2006) – for in-depth theoretical analysis. We establish

the consistency and asymptotic normality of our class of system estimators. We propose a standard

two-step estimation procedure that potentially yields more efficient estimates than a one-step systems

estimator in the case that the errors across equations are indeed correlated. Our use of non-neutral

fixed effects – in lieu of their neutral counterparts – circumvents the need to remove the fixed effects

via some type of weighting or first difference transformation prior to estimation, to avoid biased and

inconsistent estimates of, in particular, the marginal effects. Further, our use of generalized product

kernels (Racine & Li 2004) allows us to avoid the incidental parameters problem associated with many

parametric panel models that include dummy variables to account for unobserved effects.

Our theoretical framework can be seen as a generalization of both the single equation models

proposed by Li, Huang, Li & Fu (2002), Das (2005), Cai, Das, Xiong & Wu (2006), Cai & Li (2008),

Tran & Tsionas (2009), and Cai & Xiong (2012), as well as the multivariate response models of Welsh

& Yee (2006) and Henderson et al. (2015). One important difference between our class of system

estimators and those of Welsh & Yee (2006) and Henderson et al. (2015) is that we allow for correlation

between any of the conditioning variables and the error term; hence, these other papers consider a

system of reduced form equations, whereas we consider a system of structural equations. Such an

important distinction renders our theoretical analysis a nontrivial extension of these aforementioned

studies; we, however, show the numerical and asymptotic links between our estimators and some

of these studies.3 Our model and estimators can be used to empirically analyze a wide range of

economic and non-economic phenomena. Moreover, the theoretical contributions of this paper are of

independent interest and complement the relevant existing theoretical works.

Implementation of our new methodological tool and its application to a panel of 114 developed

and developing countries over the period 1984 to 2010 yield that across developed and developing

economies, causal, heterogeneous symbiosis and FDI-commensalism are the most dominant types of

interactions between FDI and economic growth. The latter interaction suggests that in some countries

there is no direct multiplier benefit between FDI and economic growth. Estimates of the smoothing

parameters for our measure of institutional quality, and unobserved country- and year-specific factors

a single equation specification of the effects of FDI on growth rates. The model considered here is therefore substantially
more general than either of those empirical specifications.

3We focus on local-linear estimators and derive a class of semiparametric system GMM estimators that includes
instrumental variables estimators, seemingly unrelated regressions, and both semiparametric and nonparametric estima-
tors. In contrast, Henderson et al. (2015) focus on local-constant estimators of a varying coefficient seemingly unrelated
regression model, deriving both unrestricted and restricted estimators; in addition, they develop a consistent model
specification test to accompany their estimators.
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substantiate our claim that these three factors induce nonlinear forms of parameter heterogeneity in

our simultaneous equation model, and are important in the growth-FDI nexus. In particular, we find

empirical support for the use of non-neutral – rather than neutral – fixed effects.

We begin in Section 2 with a formal setup of our semiparametric system of simultaneous equations

model – through which we will examine the FDI-growth nexus – and then derive our proposed class of

semiparametric systems estimators. We present the large sample theory for the estimators in Section

3. We provide our empirical model and a description of our data, including the instrumental variables,

in Section 4. We present our empirical results in Section 5, and Section 6 provides our conclusions.

We provide detailed proofs for our large sample theory in the technical appendix to this paper.

2 Semiparametric System of Simultaneous Equations Estimation

To unveil empirical evidence on the types of interactions between economic growth and FDI, and

the effect of institutional quality on such interactions, we put forward a very general semiparametric

simultaneous system of equations model. We develop a novel class of semiparametric estimators suited

for obtaining consistent estimates from different formulations of our semiparametric simultaneous

system of equations model. From henceforth, we use the term vector to mean a column vector, unless

otherwise stated.

To begin, consider in general form a J-variate semiparametric system of simultaneous equations

y1,it

yJ,it

=
...

=

Y ′−1,itλ1(Z1,it) +X ′1,itγ1(Z1,it) + ε1,it
...

Y ′−J,itλJ(ZJ,it) +X ′J,itγJ(ZJ,it) + εJ,it

(2.1)

where the j-th equation is

yj,it = Y ′−j,itλj(Zj,it) +X ′j,itγj(Zj,it) + εj,it, (2.2)

for j = 1, . . . , J , i = 1, . . . , N , and t = 1, . . . , T . In equation j for cross-sectional unit i in time period

t, yj,it is a scalar response variable, Y−j,it is a pj-dimensional vector of endogenous variables that

includes at least one yj1,it with j1 6= j; hence, the presence of Yj,it in each equation renders the system

non-triangular. In addition, Xj,it is a kj-dimensional vector of exogenous variables in which the first

entry is equal to 1, Zj,it ∈ Rdj is a vector of exogenous variables, λj(·) and γj(·) are unknown Borel

measurable functions of conformable dimensions, and εj,it is the idiosyncratic error term.4 Notice

that, for the general derivation, we assume that the elements of Zj,it are continuously distributed;

in practice, this assumption is easily relaxed to accommodate mixed categorical and continuous data

using the important tools developed by Racine & Li (2004).

Our main interest is in the set of unknown coefficient functions {λj(·)}, which clearly captures the

types of interactions between the pairs yj and yj1 with j1 6= j. To characterize all interactions between

any pair yj and yj1 with j1 6= j, we adopt the following taxonomy from the biological literature:

Definition 2.1. Let lj ∈ {1, . . . , J} and λj(·) = {λj,lj (·) : Rdj → R, lj 6= j}. Assume that for

cross-sectional unit i in time period t the effect of yj and yj1 with j1 6= j can be positive, negative or

4It is common in panel data models to define a one- or two-way error component specification for the idiosyncratic
noise. We, however, follow the panel nonparametric GMM models of Cai & Li (2008) and Tran & Tsionas (2009) in our
theoretical specification.
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zero, and vice versa. Between the pair of variables (yj,it, yj1,it) we say there exists:

(a) symbiosis if λj,j1(·), λj1,j(·) > 0;

(b) yj1,it-commensalism if λj,j1(·) > 0 and λj1,j(·) = 0;

(c) synnercrosis if λj,j1(·), λj1,j(·) < 0;

(d) yj1,it-antagonistic symbiosis if λj,j1(·) > 0 and λj1,j(·) < 0;

(e) yj,it-ammensalism if λj,j1(·) < 0 and λj1,j(·) = 0;

(f) non-symbiosis if λj,j1(·) = λj1,j(·) = 0.

Remark 2.2. As mentioned in the preamble of this paper, plausible theoretical predictions are that the

effect of FDI on economic growth and the effect of economic growth on FDI can be positive, negative

or zero. Moreover, within a country there can be symbiosis between FDI and growth in one time

period, but growth-commensalism in another time period as a result of, say, certain country-specific

policies. Thus, this general taxonomy seems quite fitting for characterizing all possible theoretical

interactions between FDI and growth. In other empirical applications, however, only a subset of this

taxonomy may be applicable due to theoretical constraints of the signs of several {λj(·)} coefficient

functions.

To proceed with estimation, we reformulate (2.2) as

yj,it = X̃ ′j,itgj(Zj,it) + εj,it, (2.3)

where X̃ ′j,it := (Y ′−j,it, X
′
j,it) and gj(Zj,it) := (λ′j(Zj,it), γ

′
j(Zj,it))

′ and mj := pj + kj .
5 Our estimators

are motivated by the following conditional moment condition that we assume to hold throughout our

various theoretical settings:

E[εit|Zit] = 0, (2.4)

where εit = (ε1,it, . . . , εJ,it)
′, and Zit = (Z ′1,it, . . . , Z

′
J,it)

′. In the absence of a distributional assumption

on εit, we opt to use the generalized method of moments (GMM) approach to estimate our system of

equations. The general unspecified form of our coefficient functions gj(·) in (2.3) precludes estimation

of our system with parametric GMM estimation. The estimators of gj(·), however, can be obtained

using nonparametric GMM methods. For our economic analysis, we are interested in estimating these

unknown coefficient functions and their derivatives in all equations. Consequently, we first linearize

the gj(·) in each equation using local-linear approximation (Fan & Gijbels 1996); we apply this method

to our system of equations as follows. We assume each gj is sufficiently smooth and consider a first-

order Taylor series expansion of gj(Zj,it) around a fixed point zj in a neighborhood of {Zj,it}, so that

the sth component of this expansion is

gsj (Zj,it) ≈ asj + (bsj)
′(Zj,it − zj), s = 1, . . . ,mj , (2.5)

where bsj := ∂gsj (zj)/∂zj , a dj × 1 vector of first-order derivatives. Note that for the j-th equation,

the remainder term of the second-order Taylor series expansion of the s-th component of gj(Zj,it),

5In general, Zj,it is required to be the same across gj(·) for any j because of substantial econometric difficulties
that arise in estimation of a semiparametric varying coefficient model in which the coefficient variables differ across
coefficients.
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gsj (Zj,it), is

Rsj(Zj,it, zj) = gsj (Zj,it)− asj − (bsj)
′(Zj,it − zj)−

1

2
(Zj,it − zj)′∇2gsj (zj)(Zj,it − zj), (2.6)

and Rj(Zj,it, zj) = (R1
j (Zj,it, zj), R

2
j (Zj,it, zj), . . . , R

mj

j (Zj,it, zj))
′ is a mj-dimensional vector. Define

R̄sj(Zj,it, zj) := 1
2(Zj,it − zj)′∇2gsj (zj)(Zj,it − zj) to be the second order term in the expansion, and

R̄j(Zj,it, zj) = (R̄1
j (Zj,it, zj), R̄

2
j (Zj,it, zj), . . . , R̄

mj

j (Zj,it, zj))
′.

Combining (2.3) and the first-order approximation in (2.5) we obtain

yj,it ≈ U ′j,itαj + εj,it, (2.7)

where Uj,it :=

(
X̃j,it

X̃j,it ⊗ (Zj,it − zj)

)
is a vector of dimension mj(dj + 1), ⊗ is the Kronecker prod-

uct operator, and the corresponding coefficient vector is αj := (a1j , . . . , a
mj

j , (b1j )
′, . . . , (b

mj

j )′)′. Now

stacking observations by T , then by N , and then by J gives the compact system formulation

y ≈ Uα+ ε, (2.8)

where y = (y′1, . . . , y
′
J)′, U = block diag(U1, . . . , UJ) so that for each j, Uj is a matrix of NT×mj(dj+1)

observations on all right-hand side variables, α = (α′1, . . . , α
′
J)′, and ε = (ε′1, . . . , ε

′
J)′ with εj =

(εj,11, . . . , εj,1T , . . . , εj,21, . . . , εj,2T , . . . , εj,N1, . . . , εj,NT )′.

We now assume the existence of additional information in the form of instruments, W , to ensure

the identification of the α parameter in the system in (2.8). For the population moment conditions,

let Vj,it := (W ′j,it, Z
′
j,it)
′ and Vit = (V ′1,it, . . . , V

′
J,it)

′. Thus,

E(εit|Vit) = 0. (2.9)

In light of our moment equality in (2.9), for any measurable function Q(Vit),

E(εit|Vit) = 0 ⇐⇒ E(Q(Vit)εit|Vit) = 0. (2.10)

In essence, a plethora of conditional and unconditional moment equations can be generated from (2.10)

using different specifications of Q(Vit). In the spirit of Cai & Li (2008), we choose for each equation j,

Qj,it := Q(Vj,it) =

(
Wj,it

Wj,it ⊗ (Zj,it − zj)/hj

)
, which is a low-order polynomial vector of dimension

lj(dj +1) in Wj,it and Zj,it, lj is the dimension of Wj,it, and lj ≥ mj for identification. In addition, the

first entry of the vector Wj,it is equal to one. Clearly, this simple form of Qj,it may not be the optimal

form of the instruments for our model of interest. Newey (1990), for example, provides a mechanism

for obtaining optimal instruments. However, deriving the functional form of optimal instruments for

our model is beyond the scope of this paper.

We consider two types of local-linear GMM estimators for theoretical analysis. We draw on insights

from the work of Welsh & Yee (2006) to guide us in constructing such estimators. Using a nonpara-

metric exogenous system of seemingly unrelated regressions (SUR) – in which the regressor differs

across equations – Welsh & Yee (2006) document that (i) consistency of the local-linear estimator

via weighted least squares hinges on the position of the kernel weights in the unconditional moment

equations, and (ii) under a homoscedasticity assumption, there is no gain in asymptotic efficiency
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from accounting for the correlation across errors – that is, there is no gain in smoothing jointly over

smoothing marginally.

To yield a local-linear GMM estimator that is consistent, the nonparametric and multivariate

nature of our model in (2.8) and our use of kernel smoothing therefore suggest careful consideration of

our functional form for the system-based unconditional moment equation that is implied by (2.10). For

ease of exposition, we letQ = block diag(Q1, . . . , QJ) so that for each j, Qj is a matrix ofNT×lj(dj+1)

observations on the variables in Qj,it. Also, let the system kernel matrix K = block diag(K1, . . . ,KJ)

where Kj = diag(Khj (Zj,11−zj), . . . ,Khj (Zj,NT −zj)) with Khj (·) := h
−dj
j Kj(·/hj), a kernel function

in Rdj for equation j. Define m̃j := mj(dj + 1), m̃ :=
∑J

j=1 m̃j , and similarly, l̃j := lj(dj + 1),

l̃ :=
∑J

j=1 l̃j .

For our first local-linear GMM estimator, we assume that A := V ar(εε′|V ) is a known NT ×NT
positive definite weighting matrix, and seek the nonparametric GMM system estimator α̂ such that

the following unconditional moment requirement is satisfied

Q′K1/2A−1K1/2(y − Uα) = 0. (2.11)

This moment condition corresponds to a local-linear GMM generalized least squares (GLS) estimator.

In (2.11), we adopt the system of equations kernel weighting structure of Welsh & Yee (2006) that

guarantees consistency of α̂. Intuitively, the use and position of K1/2 in (2.11) ensures that the cross-

product of residuals, which are in the off-diagonal entries, are weighed symmetrically. This moment

condition, however, represents an inconsistent system of l̃ equations in m̃ unknowns, which will not

yield a unique estimator of α. We can premultiply (2.11) by a suitable scaling matrix to ensure we

have a consistent system of equations for uniquely identifying the local-linear GMM-GLS estimator

α̂. In the spirit of Cai & Li (2008), we choose U ′K1/2A−1K1/2Q as the m̃× l̃ scaling matrix so that

(2.11) becomes

U ′K1/2A−1K1/2Q ·Q′K1/2A−1K1/2(y − Uα) = 0. (2.12)

Then solving (2.12) gives

α̂ = [U ′(K1/2A−1K1/2)QQ′(K1/2A−1K1/2)U ]−1[U ′(K1/2A−1K1/2)QQ′(K1/2A−1K1/2)y]. (2.13)

Remark 2.3. Note that α̂, as defined by (2.13), does not take into account the variance-covariance

moment matrix V ar(Q′K1/2A−1K1/2ε), and is therefore not the fully-efficient GMM estimator of α.

Deriving a formula for the fully-efficient GMM estimator of α that is predicated on (2.11) will yield a

very long expression that will provide no additional insights beyond what can be extracted from the

asymptotic theory of α̂.

Using a nonparametric exogenous vector measurement error model (a nonparametric system of

SUR that has identical covariates across equations), Welsh & Yee (2006) also document that (i) the

position of the kernel weights in the unconditional moment equations is immaterial for consistency

of the local linear estimator via weighted least squares, and (ii) in some instances, and even under

the homoscedasticity assumption, ignoring the correlations in errors across equations can result in a

large loss in efficiency – that is, there can be gains in smoothing jointly over smoothing marginally. A

semiparametric system of simultaneous equations in which the coefficient covariates are identical across

equations is the model we use in our empirical application; moreover, and in light of the findings in

Welsh & Yee (2006), a local-linear GMM estimator for such a model has different asymptotic properties
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from those of α̂.

Thus, for our second local-linear GMM estimator, we consider another GMM-based local-linear

system estimator but for the system model with Z1,it = Z2,it = · · · = ZJ,it = Zit. For this model,

we also assume h1 = h2 = · · · = hJ = h, and K1 = K2 = · · · = KJ = K to carry out local-linear

estimation. Also, we assume that Γ−1 is a known l̃× l̃ positive definite weighting matrix and seek the

local-linear GMM system estimator α̂GMM such that

α̂GMM = arg min
α

(y − Uα)′K̃QΓ−1Q′K̃(y − Uα), (2.14)

where K̃ = K ⊗ IJ , and Q and U are as previously defined but with Zit in lieu of Zj,it,∀ j. Then

α̂GMM =
[
U ′K̃QΓ−1Q′K̃U

]−1[
U ′K̃QΓ−1Q′K̃y

]
. (2.15)

3 Asymptotic Properties

To establish the asymptotic properties of our class of estimators, α̂ and α̂GMM , we adopt the scaling

approach in Cai & Li (2008) by defining H := block diag(H1, . . . ,HJ) so that for each j, Hj :=

diag(Imj , hjIdjmj
) where Imj represents an identity matrix of size mj . We develop and discuss the

asymptotic properties of α̂, and then state the corresponding properties for α̂GMM , in that order.

For ease of exposition, we define α̂ := [S′nSn]−1S′nTn, where n := NT , and

Sn =
1

n
Q′(K1/2A−1K1/2)U, and Tn =

1

n
Q′(K1/2A−1K1/2)y.

We define Ũj,it := H−1j Uj,it =

(
X̃j,it

X̃j,it ⊗ (Zj,it − zj)/hj

)
, so that

Hα̂ = [S̃′nS̃n]−1S̃′nTn,

where

S̃n = SnH
−1 =

1

n
Q′(K1/2A−1K1/2)UH−1 =

1

n
Q′(K1/2A−1K1/2)Ũ ,

with Ũ := UH−1. Then, we decompose Tn as follows:

Tn = S̃nHα+ T ∗n +Bn +Rn,

in which T ∗n = 1
nQ
′(K1/2A−1K1/2)ε, Bn = 1

nQ
′(K1/2A−1K1/2)X̃R̄, Rn = 1

nQ
′(K1/2A−1K1/2)X̃R, and

X̃ := block diag (X̃1, . . . , X̃J), X̃j is a n×mj matrix of observations on X̃j,it, and R̄ := (R̄′1, . . . , R̄
′
J)′

and R := (R′1, . . . , R
′
J)′ are vectors of dimension

∑J
j=1mj . We seek to establish the asymptotic

properties of a properly normalized variant of H(α̂− α), which we express as

H(α̂− α)− (S̃′nS̃n)−1(S̃′nBn)− (S̃′nS̃n)−1(S̃′nRn) = (S̃′nS̃n)−1(S̃′nT
∗
n). (3.1)

On the left-hand side of (3.1), the second term will determine the asymptotic bias, whereas the third

term will be shown to be asymptotically negligible. The term on the right-hand side of (3.1) will be

shown to be asymptotically normal.

Without loss of generality, and in light of our empirical analysis of interest, from henceforth we
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restrict our theoretical developments to a bivariate semiparametric system of simultaneous equations.

Some additional notations are in order. We define

µj,2(Kj) :=

∫
uju
′
jKj(uj)duj , and νj,0 :=

∫
K2
j (uj)duj ,

Ωj = Ωj(zj) = E[Wj,itX̃
′
j,it|Zj,it = zj ],

Ω∗j = Ω∗j (zj) = V ar[Wj,itεj,it|Zj,it = zj ],

Ωlm
jk (z1, z2) := E{Wj,itW

′
k,itεl,itεm,it|Z1,it = z1, Z2,it = z2}, for j, k, l,m = {1, 2},

Ωjk = Ωjk(z1, z2) = E[Wj,itX̃
′
k,it|Z1,it = z1, Z2,it = z2], for j 6= k = {1, 2},

Sj = Sj(zj) :=

(
Ωj 0

0′ Ωj ⊗ µj,2(Kj)

)
, and S = block diag(S1, S2),

S∗j = S∗j (zj) :=

(
Ω∗jνj,0 0

0′ Ω∗j ⊗ µj,2(K2
j )

)
, and S∗ = block diag(S∗1 , S

∗
2),

Bj(zj) =

∫ (
ΩjAj(uj , zj)

{ΩjAj(uj , zj)} ⊗ uj

)
Kj(uj)duj , and Aj(uj , zj) =


u′j∇2g1j (zj)uj

...

u′j∇2g
mj

j (zj)uj

 ,

with ∇2gsj (zj) := ∂gsj (zj)/∂zj∂z
′
j , and B(z) =

(
B1(z1)

′, B2(z2)
′)′, and the dimension of 0, the zero

matrix, differs according to context in which it is used. In addition, define

G
(jk,lm)
1t (z1, z2) := E{Wj,i1W

′
k,itεl,i1εm,it|Zi1 = z1, Zit = z2}.

The following assumptions are needed to establish the asymptotic properties of α̂, our local-linear

GMM-GLS estimator, in the case of large N and small T . Note that we will use the vector notation

εit to mean (ε1,it, ε2,it)
′, and similar notations for Wit, Xit, Yit, Zit, etc.

Assumption A.1. (i) {(Wit, Xit, Yit, Zit, εit)} are i.i.d. across the i index for each fixed t and strictly

stationary over t for each fixed i, E|εj,it|2 <∞, and E‖Wj,itX̃
′
k,it‖2 <∞, E‖Wj,itW

′
k,it‖2 <∞, where

‖A‖ is the Frobenius norm for a finite-dimensional matrix A; this norm reduces to the usual Euclidean

norm if A is a column vector.

(ii) The conditional variance of εit is Σ a bivariate positive definite matrix defined as

Σ(v) := V ar(εit|Vit = v) =

(
σ21 σ1σ2ρ

σ1σ2ρ σ22

)
.

Assumption A.2. For each t ≥ 1, G
(jk,lm)
1t (z1, z2) and f1t(z1, z2), the joint density of Zi1 and Zit, are

continuous at (z1, z2). Also, for each zj , Ωj(zj), Ωjk(z1, z2), and fj(zj) are bounded away from zero,

where fj(zj) is the marginal density function of Zj,it. Further, supt≥1 |G
(jk,lm)
1t (z1, z2)f1t(z1, z2)| ≤

M(z1, z2) < ∞ for some arbitrary function M(z1, z2). In addition, gj(zj) and fj(zj) are both twice

continuously differentiable at zj ∈ Rdj . The joint density of Zit = (Z ′1,it, Z
′
2,it)

′ is f(z) = f(z1, z2), and

the partial derivatives f (j)(z) = ∂f(z)/∂zj and f (j,k)(z) = ∂2f(z)/∂zj∂z
′
k exist and are continuous.

Assumption A.3. The kernel functions Kj(·) are even, nonnegative, bounded density functions with

compact support.

Assumption A.4. The instrumental variable Wit satisfies the conditions that E(εit|Wit, Zit) = 0 and

E[π(Vit)π(Vit)
′|Zit = z] is of full rank for all z, where π(Vit) = E(X̃it|Vit).
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Assumption A.5. For j = 1, 2, (i) hj → 0, (ii) Nh
dj
j →∞, and (iii) Nh

dj
j h

dk
k →∞ as N →∞, and

h
dj
j /h

dk
k → 1 for j 6= k.

Assumption A.6. There exists some arbitrary δ > 0 such that E{|εj,itWk,it|(2+δ)|Zj = uj , Zk = uk}
is continuous at uj = zj and uk = zk.

Remark 3.1. These assumptions contain some standard regularity conditions in the GMM and non-

parametric literatures for panel data models with large N and small T . Moreover, these conditions

represent generalizations to those in Welsh & Yee (2006) and Cai & Li (2008). Assumption A.1 ex-

tends the orthodox assumptions in the single-equation panel data models to a two-equation case. Note

that E|εj,itεk,it| < ∞, an assumption that we omit, follows from E|εj,it|2 < ∞ and an application of

the Cauchy-Schwarz inequality. Assumption A.2 provides bounds and smoothness conditions on the

functionals in the proofs. The twice differentiability condition on the marginal distributions and func-

tions is slightly stronger than warranted because it is possible to impose a Lipschitz condition on the

first derivative of these marginals in lieu of the assumption of existence and continuity of the second

derivative. The use of such general substitution, however, would lead to more cumbersome notations.

Assumption A.3 renders Kj(·) a member of the class of second-order kernels. The nonnegativity and

boundedness of Kj(·) are used several times in the proofs. Assumption A.4 is the identification con-

dition. Assumption A.5 states that the each bandwidth is a null sequence of positive integers, and

provides minimal conditions on the bandwidths to ensure consistency of the corresponding kernel es-

timators. Also, Assumption A.5 requires that the two bandwidths have the same order of magnitude.

Assumption A.6 provides a Liapounov’s condition, which we use in establishing asymptotic normality.

Define θ := {σ21(1 − ρ2)}−1, β := −ρ{σ1σ2(1 − ρ2)}−1, and γ := {σ22(1 − ρ2)}−1 with |ρ| < 1. By

virtue of Assumption A.1, we can express the matrices Υ := Σ−1 and A−1 as follows:

Υ =

(
θ β

β γ

)
, A−1 = Υ⊗ INT :=

 Dθ
... Dβ

. . . . . . . . .

Dβ
... Dγ

 . (3.2)

Finally, we define Dθγ := block diag(θIl̃1 , γIl̃2), D̃j := h
dj
j Im̃j , D̃ := block diag(D̃1, D̃2), and ιm̃j is

an m̃j-dimensional unit vector so that

h̃2m̃ :=
(
h21ι
′
m̃1
, h22ι

′
m̃2

)′
, h̃2

l̃
:=
(
h21ι
′
l̃1
, h22ι

′
l̃2

)′
,

Ĩ2m̃ := block diag
(
h21Im̃1 , h

2
2Im̃2

)
, Ĩ2

l̃
:= block diag

(
h21Il̃1 , h

2
2Il̃2
)

f̃m̃(z) := block diag
(
f1(z1)Im̃1 , f2(z2)Im̃2

)
, f̃l̃(z) := block diag

(
f1(z1)Il̃1 , f2(z2)Il̃2

)
.

The following results establish consistency and asymptotic normality of α̂.

Proposition 3.2. If Assumptions A.1 to A.5 hold, then

(i) S̃n = f̃l̃(z)DθγS{1 + oP(1)},

(ii) Bn = 1
2 Ĩ

2
l̃
f̃l̃(z)DθγB(z) + oP(h̃2

l̃
), and

(iii) Rn = oP(h̃2
l̃
).
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Proposition 3.3. If Assumptions A.1 to A.5 hold, then

nD̃V ar(T ∗n) = f̃l̃(z)D
2
θγS
∗, (3.3)

where D̃ := block diag(D̃1, D̃2) with D̃j := h
dj
j Il̃j , for j = 1, 2.

Theorem 3.4. (i) If Assumptions A.1 to A.5 hold, then

H(α̂− α)− Ĩ2m̃
2
B∗(z) = oP(h̃2m̃) +OP

(
n−1/2D̃−1/2ιm̃

)
, (3.4)

where B∗(z) :=
(
S′S

)−1(
S′B(z)

)
.

(ii) If Assumptions A.1 to A.6 hold, then

(
n1/2D̃1/2

)[
H(α̂− α)− Ĩ2m̃

2
B∗(z) + oP(h̃2m̃)

]
d→ N

(
0, f̃−1m̃ (z)∆

)
, (3.5)

where ∆ := (S′S)−1S′S∗S(S′S)−1.

Remark 3.5. The block-diagonal nature of the matrices S and S∗ implies that the estimators of

the coefficient functions and their derivatives are asymptotically uncorrelated across equations. This

result is equivalent to assuming the errors across equations are conditionally uncorrelated, that is

ρ = 0. Thus, under specific conditions, α̂ – the local-linear GMM-GLS estimator – does not yield any

gain in smoothing jointly over smoothing marginally. Indeed, decomposing B∗(z) and ∆ reveals that

B∗(z) =
(
B1,g(z2)

′|0′|B2,g(z2)
′|0′
)′
,

with

Bj,g(zj) =

∫
Aj(uj , zj)Kj(uj)duj =

[
tr
(
∇2gsj (zj)µj,2(Kj)

)]
mj×1

,

and ∆ := block diag(∆1,∆2), and ∆j = diag
{
νj,0Ωj,g,Ωj,g ⊗ [µ−1j,2 (Kj)µj,2(K

2
j )µ−1j,2 (Kj)]

}
with Ωj,g =

(Ω′jΩj)
−1Ω′jΩ

∗
jΩj(Ω

′
jΩj)

−1, which are identical to the asymptotic bias and variance terms from a

bivariate variant of the main results of Cai & Li (2008). Note that these results also demonstrate

the parallels between certain properties of GMM estimators for parametric and nonparametric system

models.

As previously mentioned, the results in Theorem 3.4 are quite general and therefore nest the

asymptotic properties of several other estimators including, for example, a few in Welsh & Yee (2006).

We now demonstrate the links between our α̂ and some estimator in the existing literature. The

comparable estimators in Welsh & Yee (2006) are derived from a set of nonparametric SUR models. We

first consider a semiparametric estimator of the Welsh & Yee (2006) econometric modeling framework

that is predicated on the assumption of E[εj,it|X̃ ′j,it] = 0. To begin, we suppose Wj,it = X̃j,it, ∀ i, j, t,

and define Q̃j,it :=

(
X̃j,it

X̃j,it ⊗ (Zj,it − zj)/hj

)
. We define the system estimator in this case as α̃,

where

α̃ = [Q̃′(K1/2A−1K1/2)U ]−1[Q̃′(K1/2A−1K1/2)y]. (3.6)
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To derive the asymptotic properties, we simply put Wj,it in lieu of X̃j,it in all relevant expressions on

page 9 and relabel, for example, in the following way:

Ω̃j := E[X̃j,itX̃
′
j,it|Zj,it = zj ],

Ω̃∗j := V ar[X̃j,itεj,it|Zj,it = zj ],

Ω̃lm
jk (z1, z2) := E{X̃j,itX̃

′
k,itεl,itεm,it|Z1,it = z1, Z2,it = z2}, for j, k, l,m = {1, 2},

Ω̃jk := Ωjk(z1, z2) = E[X̃j,itX̃
′
k,it|Z1,it = z1, Z2,it = z2], for j 6= k = {1, 2}.

We relabel S̃j , B̃j(zj), B̃(z), S̃, S̃∗, and G̃
(jk,lm)
1t in a similar manner. To this end, the results of

Propositions 3.2 and 3.3 continue to hold but with
˜̃
Sn, S̃, B̃n, R̃n, T̃ ∗n and S̃∗ respectively in lieu of

S̃n, S, Bn, Rn, T ∗n and S∗. The following theorem establishes consistency and asymptotic normality

of the GMM estimator α̃ from the semiparametric system of SUR model.

Theorem 3.6. Suppose E[εj,it|X̃ ′j,it] = 0.

(i) If Assumptions A.1 to A.5 hold, then

H(α̃− α)− Ĩ2m̃
2
B̃∗(z) = oP(h̃2m̃) +OP

(
n−1/2D̃−1/2ιm̃

)
, (3.7)

where B̃∗(z) := S̃−1B̃(z).

(ii) If Assumptions A.1 to A.6 hold, then

(
n1/2D̃1/2

)[
H(α̃− α)− Ĩ2m̃

2
B̃∗(z) + oP(h̃2m̃)

]
d→ N

(
0, f̃−1m̃ (z)∆̃

)
, (3.8)

where ∆̃ := S̃−1S̃∗S̃−1.

We can use our preceding results to obtain an estimator for a purely nonparametric SUR model

characterized by

yj,it = gj(Zj,it) + εj,it, gj(·) : Rdj → R, for j = 1, 2. (3.9)

To begin, we set Wj,it = X̃j,it = 1, Q̆j,it :=

(
1

(Zj,it − zj)/hj

)
, and Ŭj,it :=

(
1

(Zj,it − zj)

)
. We

define the system estimator in this case as ᾰ, where

ᾰ = [Q̆′(K1/2A−1K1/2)Ŭ ]−1[Q̆′(K1/2A−1K1/2)y]. (3.10)

The results of Propositions 3.2 and 3.3 continue to hold but with
˘̃
Sn, S̆, B̆n, R̆n, T̆ ∗n and S̆∗ respectively

in lieu of S̃n, S, Bn, Rn, T ∗n and S∗. The following corollary establishes consistency and asymptotic

normality of ᾰ.

Corollary 3.7. Suppose in 2.3 X̃j,it = 1, ∀ i, j, t. That is, suppose the purely nonparametric SUR in

(3.9) is the model of interest.

(i) If Assumptions A.1 to A.5 hold, then

H(ᾰ− α)− Ĩ2m̃
2
B̆∗(z) = oP(h̃2m̃) +OP

(
n−1/2D̃−1/2ιm̃

)
, (3.11)
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where B̆∗(z) := S̆−1B̆(z).

(ii) If Assumptions A.1 to A.6 hold, then

(
n1/2D̃1/2

)[
H(ᾰ− α)− Ĩ2m̃

2
B̆∗(z) + oP(h̃2m̃)

]
d→ N

(
0, f̃−1m̃ (z)∆̆

)
, (3.12)

where ∆̆ := S̆−1S̆∗S̆−1.

Remark 3.8. Consider the specific case of Corollary 3.7 in which Zj,it is a scalar – as in Welsh

& Yee (2006). Then it is straightforward to show that B̆∗(z) simplifies to the 4-dimensional vector(
µ1,2(K1)∇2g1(z), 0, µ2,2(K2)∇2g2(z), 0

)′
, whereas ∆̆ becomes the 4 × 4 matrix block diag

(
∆̆1, ∆̆2

)
with

∆̆j = σ2j (z)

(
νj,0 0

0 µj,2(K
2
j )(µj,2(Kj))

−2

)
.

This specific case captures the asymptotic properties of a scaled variant of the nonparametric SUR

estimator in Welsh & Yee (2006), for panel data and under the assumption that the errors {εit} are

i.i.d. across i for each fixed t. Note that, unlike the unscaled ᾰ in Welsh & Yee (2006), scaling of

our ᾰ by the H matrix renders (i) the biases of the derivative estimators asymptotically zero and

(ii) the estimators of gj(zj) and ∇gj(zj) asymptotically uncorrelated. However, similar to Welsh &

Yee (2006), the estimates of
(
g1(z1),∇g1(z1)

)′
and

(
g2(z2),∇g2(z2)

)′
are asymptotically uncorrelated.

These observations also apply to α̂ and α̃.

For α̂GMM , our second estimator, we seek to establish the asymptotic properties of a properly

normalized variant of H(α̂GMM − α), which we express as

H(α̂GMM − α)− (S̃′nΓ−1S̃n)−1(S̃′nΓ−1Bn)− (S̃′nΓ−1S̃n)−1(S̃′nΓ−1Rn) = (S̃′nΓ−1S̃n)−1(S̃′nΓ−1T ∗n),

(3.13)

where we redefine S̃n, Bn, Rn and T ∗n respectively as

S̃n =
1

n
Q′K̃Ũ , Bn =

1

n
Q′K̃X̃R̄, Rn =

1

n
Q′K̃X̃R, T ∗n =

1

n
Q′K̃ε.

The following assumptions are needed to establish the asymptotic properties of α̂GMM in the case of

large N and small T .

Assumption B.1. For each t ≥ 1, G1t(z1, z2) and f1t(z1, z2), the joint density of Zi1 and Zit, are

continuous at (z1 = z, z2 = z). Also, for each z, Ω(z) > 0 and f(z) > 0, where f(z) is the marginal

density function of Zit. Further, supt≥1|G1t(z, z)f1t(z, z)| ≤ M(z) < ∞ for some function M(z).

Finally, g(z) and f(z) are both twice continuously differentiable at z ∈ Rd.

Assumption B.2. The kernel function K(·) is an even, nonnegative, and bounded density function

with compact support.

Assumption B.3. h→ 0 and Nhd →∞ as N →∞.

Assumption B.4. There exists some δ > 0 such that E{|εitWit|(2+δ)|Z = u} is continuous at u = z.

Clearly, Assumptions B.1 to B.4 are simplifications of Assumptions A.2, A.3, A.5, A.6, respectively.

We now state the asymptotic properties of α̂GMM .
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Proposition 3.9. Suppose Z1,it = Z2,it = Zit, h1 = h2 = h, and K1 = K2 = K. If Assumptions A.1,

A.4 and B.1 to B.3 hold, then

(i) S̃n = f(z)S{1 + oP(1)},

(ii) Bn = 1
2h

2f(z)B(z) + oP(h2),

(iii) Rn = oP(h2),

(iv) nhdV ar(T ∗n) = f(z)S∗∗, where

S∗∗ :=

(
S∗1 S∗12
S∗21, S∗2

)
, S∗12 :=

(
Ω12
12ν0 0

0′ Ω12
12 ⊗ µ2(K2)

)
, S∗21 = (S∗12)

′.

Remark 3.10. The result in Proposition 3.9 (iv) suggests that the diagonal and off-diagonal block

terms in V ar(T ∗n) are of the same order of magnitude: an efficacy of the assumption of common

Z’s across equations; consequently, if we impose this assumption on our estimator α̂, its asymptotic

variance will not be a block diagonal matrix.

Theorem 3.11. Suppose Z1,it = Z2,it = Zit, h1 = h2 = h, and K1 = K2 = K.

(i) If Assumptions A.1, A.4 and B.1 to B.3 hold, then

H(α̂GMM − α)− h2

2
B∗(z) = oP(h2) +OP

(
n1/2hd/2), (3.14)

where B∗(z) :=
(
S′Γ−1S

)−1(
S′Γ−1B(z)

)
.

(ii) If Assumptions A.1, A.4 and B.1 to B.4 hold then

n1/2hd/2

[
H(α̂GMM − α)− h2

2
B∗(z) + oP(h2)

]
d→ N

(
0, f−1(z)∆GMM

)
, (3.15)

where ∆GMM := (S′Γ−1S)−1S′Γ−1S∗∗Γ−1S(S′Γ−1S)−1.

Remark 3.12. To estimate our empirical bivariate simultaneous model in the ensuing section, we

use the α̂GMM estimator and assume that the Z variables and the kernel density function are the

same but allow for the bandwidths to differ across equations. The salient asymptotic properties of

α̂GMM are not eliminated by the assumption of different bandwidths across equations. In addition, we

use a wild-bootstrap to conduct inference; it is well-known that in practice researchers often wish to

avoid relying on the asymptotic variance for conducting inference because of the relatively slow rate

of convergence. For details on using the bootstrap to conduct inference in nonparametric regression

models, we refer the reader to Henderson & Parmeter (2015).

4 Empirical Application

4.1 An Empirical Simultaneous Model of Growth and FDI

Our empirical bivariate semiparametric system of equations model allows for the economic growth

rate and FDI to be modeled simultaneously. We measure economic growth rate, GROit, as the growth

14



rate of real per capita GDP, and FDIit as the share of FDI inflows to GDP. We let i = 1, 2, . . . , N

denote country index, and t = 1, 2, . . . , T denote the time period. Our bivariate model takes the form

GROit = FDIitλ1(Zit) +X ′1,itγ1(Zit) + ε1,it

FDIit = GROitλ2(Zit) +X ′2,itγ2(Zit) + ε2,it. (4.1)

In our empirical model of (4.1), Xj,it is a kj-dimensioned vector of control variables for equations

j = 1, 2, such that the first entry in the vector is equal to one; Xj,it may share common elements

across j. γj(·) and λj(·) are unknown smooth coefficient functions of conformable dimensions. We

presume that Zit is a d-dimensioned vector of environmental variables, which may include a mix of

continuous and discrete regressors (Racine & Li 2004, Li & Racine 2010). We assume that Zit is

constant across both equations and across each of the mj coefficient functions. That is, we maintain

the hypothesis of the same sources of parameter heterogeneities in the growth and FDI equations. As

in our general model in Section 3, the errors εj,it are assumed to be mean zero disturbances that are

correlated across equations, and all other model assumptions are assumed to be satisfied.

4.2 Data Overview

Our data are primarily derived from the 2012 World Development Indicators database published by the

World Bank, unless otherwise specified. Our sample contains an unbalanced panel of 114 developed

and developing countries, spanning the period 1984-2010. We average our data into 9 non-overlapping

3-year panels to reduce the influence of serial correlation on our results. Also, using time-averaged

data can partially mitigate the effect of purely random measurement error and provide more reliable

estimates for our variables of interest. Due to time averaging and a dearth of data on some variables

for some countries, our effective sample contains 463 total observations.

4.3 Environmental Variables

We include a mix of continuous and discrete environmental variables in our specification of Zit. Specif-

ically, we include an index of corruption in Zit. The index of corruption comes from the International

Country Risk Guide published by the Political Risk Services Group. This measure of institutional

quality is defined as “actual or potential corruption in the form of excessive patronage, nepotism, job

reservations, ‘favor-for-favors’, secret party funding, and suspiciously close ties between politics and

business.”6 The corruption index ranges from 0 to 6, with 0 representing high levels of corruption and

6 representing low levels of corruption.

We further allow for unobserved heterogeneity in all the coefficient functions across both countries

and time, through an unordered country variable and ordered year categorical variable. The advantage

of including country and year indicators in each of our coefficients is that we can control for country

and time invariant effects – i.e., fixed effects – in a non-neutral fashion. That is, the country and year

indicators capture any country and time invariant factors that induce heterogeneity in the intercept

and slope coefficients across countries and time, which are likely to be present in our empirical model.

6This measure of corruption is quite popular in empirical works and, particularly has been used to study the effects of
corruption on economic growth (Mauro 1995), investment (Mauro 1998), and the intersection between economic growth
and FDI (McCloud & Kumbhakar 2012, Delgado et al. 2014), to name only a few.
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4.4 Explanatory Variables

The control variables we choose for the growth equation pertain to both the benchmark neoclassical

growth specification and the macroeconomic policy ideology. The control variables we choose for the

FDI equation are empirically and (or) theoretically related to FDI.

4.4.1 The Growth Equation

We specify X1,it to contain initial income, the growth rate of the population, the rate of investment in

physical capital, the inflation rate, government consumption, and openness. Initial income, population

growth, and the rate of physical capital investment are the traditional neoclassical ‘Solow’ growth

variables and are defined as follows. Initial income is the log of GDP per capita at the beginning

of each 3-year panel period; the growth rate of the population is the annual percentage change in

the total population; and investment in physical capital is defined to be gross capital formation as a

percentage of GDP. The inflation rate is the annual percentage change in the consumer price index.

Government consumption is current period government expenditure on goods and services, excluding

military spending on government capital formation. Openness is the sum of exports and imports as

a percentage of GDP, and comes from the Penn World Table version 7.1 of Heston, Summers & Aten

(2012).

Identification. Under our maintained assumption that economic growth and FDI are determined

simultaneously, there is concern that FDI is endogenous in our growth equation. In the growth

equation, a valid instrumental variable for FDI is one that is correlated with FDI, but uncorrelated

with economic growth, conditional on both X1 (i.e., ‘Solow’ and macroeconomic policy variables) and

Z (i.e., institutional quality and unobservable country and year effects).

In general, the literature that has investigated single equation growth models with FDI as the key

variable has failed to unearth a generally suitable instrumental variable for FDI.7 Borensztein et al.

(1998), Durham (2004) and Delgado et al. (2014) find evidence that lagged values of FDI perform

well and mitigate at least part of the endogeneity of contemporaneously measured FDI. However,

after considering which instrumental variables are available for panel data (i.e., with country and year

variation) and not internal to FDI (i.e., lagged measures), we are left with one other potential source

of exogenous variation in FDI: the total area of the country to measure country size. The general

intuition for using the total land area as an instrument is that, all else equal, FDI is attracted to larger

countries. Yet, there is no reason to believe that, given our set of control variables, economic growth

is directly correlated with the size of the country. In addition, Borensztein et al. (1998) find empirical

evidence to support the validity and strength of this instrumental variable. Hence, we consider the

log of the total land area in square kilometers of a country as an instrumental variable for FDI in

our growth equation. We assert that our use of an instrumental variable, in conjunction with our

robust array of conditioning variables and generalized interactive fixed effects, are able to alleviate

any concerns that endogeneity of FDI is driving any of our results.

7Notable contributions proposing a variety of instrumental variables for FDI – such as lagged values of FDI, some
time-invariant measures of institutional quality, and total area of the country – include panel and cross-sectional growth
studies by Borensztein et al. (1998), Alfaro et al. (2004), Durham (2004), and Delgado et al. (2014).
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4.4.2 The FDI Equation

In the FDI equation, we specify X2,it to contain schooling, trade openness, the inflation rate, the

foreign exchange rate, and the log of total GDP. The level of schooling in the host economy may have

explanatory power in the FDI equation. Often, foreign firms bring advanced technology into the host

economy that requires a relatively more skilled labor force relative to that required by pre-existing

technology. Hence, all else equal, a more highly educated labor force may be more inviting for FDI.We

define schooling to be the net enrollment rate in secondary school; and trade openness and inflation

are the same as those measures in the growth equation. The foreign exchange rate comes from the

Penn World Table version 7.1 of Heston et al. (2012), and is defined as the exchange rate to United

States dollars. Each of these control variables are important correlates of FDI, measuring the relative

attractiveness, macroeconomic conditions and policies, and ease of entry into the host country (foreign

exchange, trade openness, and inflation), the size of the country (log of total GDP), and the degree

of absorptive capacity (schooling).

Identification. Endogeneity of the growth rate likely arises because foreign investors view strong

economic growth as a favorable metric of financial returns, and as a general measure of economic and

institutional stability. Appropriate instrumental variables for the growth rate in the FDI equation

must be factors that are correlated with economic growth, but uncorrelated with FDI, conditional

on both X2 (i.e., macroeconomic stability and schooling variables) and Z (i.e., institutional quality

and country and year effects). One important set of growth correlates that are unlikely to be corre-

lated with FDI are demographic growth correlates – specifically, the fertility rate and life expectancy.

Henderson, Papageorgiou & Parmeter (2012) find robust econometric evidence that the demographic

growth variables have a nontrivial relationship with economic growth, using robust nonparametric es-

timators; hence, there is ample evidence that these demographic variables are correlated with growth.

We argue that these variables are uncorrelated with FDI decisions, as FDI decisions are typically re-

lated to investment risk and private return. Of course, fertility and life expectancy may be correlated

with economic or institutional factors that may also determine economic risk and return factors that

influence FDI. However, conditional on the set of economic and institutional factors in X2 and Z,

we maintain that all potential indirect linkages between demographic variables and FDI have been

accounted for. Hence, demographic growth variables are suitable instruments for economic growth in

the FDI equation. The fertility rate is defined as the average number of births per woman, and life

expectancy is defined as the life expectancy at birth measured in years.

4.5 Practical Implementation of our Estimator and Goodness of Fit Measures

With regards to the practical implementation of our proposed estimator in the context of the economic

growth and FDI model in (4.1), a few clarifications are appropriate. Since Zit is assumed to contain

a mix of continuous variables and unordered and ordered discrete categorical variables, we adopt the

generalized product kernel technique of Racine & Li (2004) and Li & Racine (2010). We define the

product kernel function Khj (·) := h
−dj
j Kj(·/hj) to be

Kj(·) =

dcj∏
c=1

kc

(
Zcj,it − zcj

hcj

) duj∏
u=1

ku(Zuj,it − zuj ;huj )

doj∏
o=1

ko(Zoj,it − zoj ;hoj) (4.2)
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in which

kc

(
Zcj,it − zcj

hcj

)
=

1√
2π

exp

1

2

(
Zcj,it − zcj

hcj

)2
 (4.3)

is a univariate Gaussian kernel function used for each of the dcj continuous variables in Zj,it,

ku(Zuj,it − zuj ;huj ) =

{
1 if Zuj,it − zuj = 0

huj if Zuj,it − zuj 6= 0
(4.4)

is a univariate discrete kernel function used for each of the duj unordered discrete variables in Zj,it,

and

ko(Zoj,it − zoj ;hoj) =

{
1 if Zoj,it − zoj = 0

ho
|Zo

j,it−zoj |

j if Zoj,it − zoj 6= 0
(4.5)

is a univariate discrete kernel function used for each of the doj ordered discrete variables in Zj,it (Li

& Racine 2007). In the above product kernel setup, hcj is a dcj-dimensioned vector of bandwidths for

the continuous variables, and huj and hoj are duj - and doj -dimensioned vectors of unordered and ordered

discrete variable bandwidths.8

We select the optimal smoothing parameters, {hcj , huj , hoj} using the method of least squares cross

validation. The method of least squares cross validation selects {hcj , huj , hoj} by minimizing the following

criterion function

arg min
{hcj ,huj ,hoj}

J∑
j=1

N∑
i=1

T∑
t=1

[
yj,it − X̃ ′−j,−itâj(Z−j,−it)

]2
(4.6)

in which X̃ ′−j,−itâj(Z−j,−it) is the leave-one-out nonparametric generalized method of moments esti-

mate of X̃ ′j,itâj(Zj,it). Although we have constructed our empirical model such that Zj,it = Zit for

each j, our cross validation procedure selects a set fixed bandwidths for each variable in Zit in each

equation; note that we do not restrict the bandwidths to be fixed across equations. Given our small

number of cross-sectional units, we opt to not use our asymptotic distribution in computing the stan-

dard error of our estimate. We obtain standard error for our estimate of α from a wild bootstrap

procedure based on 399 replications, which corrects for heteroscedasticity of unknown form.

We provide three separate measures of the goodness of fit for each equation in our model. The

first measure is the in-sample R2 calculated as R2
j = cor

[
yj,it, X̃

′
j,itâj(Zj,it)

]2
, the square of the

correlation between the observed dependent variable in equation j and its estimated counterpart. The

second measure is the out-of-sample R2, and the third measure is the out-of-sample Average Squared

Prediction Error (ASPE), calculated as (NT )−1
∑N

i=1

∑T
t=1

[
yj,it − X̃ ′j,itâj(Zj,it)

]2
for each equation.

The advantage of using out-of-sample measures of fit is that these measures are typically robust to

over-fitting, which can sometimes inflate in-sample measures of fit.9

8In our empirical model, dcj = duj = doj = 1. Note that the presence of discrete components in zj has changed the
interpretation of some of the regularity conditions in Sections 2 and 3. In particular, (i) zj ∈ Rdj should be interpreted
as (zcj , z

u
j , z

o
j ) ∈ R× Au × Ao, the product space where Au and Ao denote the finite support of zuj and zoj , respectively,

and (ii) the derivative with respect to zj should be interpreted as the derivative with respect to zcj .
9To implement our out-of-sample goodness of fit measures, we sample 80 percent of our data without replacement

and fit our model. We then use our estimates to predict on the 20 percent hold out sample and calculate both the R2

and ASPE. We repeat this procedure 1,000 times, and report the mean R2 and ASPE, in order to avoid any potential
biases in our measures of fit induced by our choice of sample splits. We refer the reader to Racine & Parmeter (2013)
for additional details on model evaluation, including adjustments to the optimal bandwidth parameter to account for
different sample sizes arising from the out-of-sample splits.
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5 Empirical Results

We now turn to the results from applying our semiparametric instrumental variables systems estimator

to our novel empirical model of economic growth and FDI in (4.1). We consider estimates of (2.15)

that use first stage estimates of A as our weighting matrix. Since our semiparametric systems estima-

tor provides observation-specific estimates and standard errors, we summarize these estimates using

45 degree gradient plots that are depicted by Figures 1 to 2 (for details on the plots, see Henderson,

Kumbhakar & Parmeter 2012). The 45 degree gradient plots found in the lower panels of the figures

show the observation specific function estimates plotted on the 45 degree line, with 95 percent ob-

servation specific confidence intervals plotted above and below each point estimate. If the horizontal

dotted line at zero lies outside of each observation specific confidence interval, then that point estimate

is statistically significant.

5.1 Characterizing the Types of Interactions between Economic Growth and FDI

The corresponding 45 degree gradient plot in Figure 1 shows that the majority of these estimates

are statistically significant at the 5 percent level. For the FDI equation, Figure 1 reveals that the

distribution of growth coefficient estimates is generally positive, and the corresponding 45 degree plot

reveals that many of these positive estimates are statistically significant. There is a clear absence of

statistical parity among the estimated coefficients for FDI inflows and growth.

Our results in Figure 1 yield an important observation – empirically, FDI has positive, negative

or no effect on economic growth, and vice versa. This observation therefore parallels the theoretical

predictions of the effect on FDI on growth and the effect of growth on FDI. Hence, our semipara-

metric system of simultaneous equations, coupled with the taxonomy in Definition 2.1, seems quite

appropriate for our analysis of the types of interactions between growth and FDI.

To characterize the types of interactions between growth and FDI on the basis of the taxonomy

in Definition 2.1, we use the following criterion: a country is placed in the category, for example,

symbiosis if at least 50 percent of its estimated effects of FDI on growth and its estimated effects of

growth on FDI is positive and statistically significant. This criterion, therefore, is not all-inclusive; for

some countries, the estimated effect of, say, FDI on growth changes sign and (or) statistical significance

across time periods. That is, on the basis of this criterion a country can belong to two or no categories

in Definition 2.1.

Table 1 contains the number of countries that can be characterized according to our Definition 2.1

and criterion. In this table, we use the term distinct to refer to countries that fall in only one

category. We find that the most dominant relationships between FDI and growth are symbiosis and

FDI-commensalism; that is, for a large number of countries either (i) FDI has a positive effect on

growth and growth has a positive effect on FDI, or (ii) FDI has a positive effect on growth but growth

has no effect on FDI. The number of countries that are in the symbiosis category is 63, of which 45

are distinct. To get an understanding of the economic significance of the nature of the growth-FDI

interaction, consider two countries Australia and Turkey that fall into only the symbiosis category.

For the period 1993 to 1995, for example, our estimates reveal that in Australia a 1 percent increase in

FDI leads to a 0.987 percent increase in economic growth and a 1 percent increase in economic growth

leads to a 0.097 percent increase in FDI; for this same period, in Turkey a 1 percent increase in FDI

leads to a 0.228 percent increase in economic growth and a 1 percent increase in economic growth leads

to a 0.062 percent increase in FDI. These symbiosis estimates imply that appreciable direct multiplier
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effects exist between FDI and growth in Australia and Turkey. These multiplier effects suggest that

(at least some) resources these two countries may devote to strengthening the effect of, say, FDI on

economic growth can be reallocated to other correlates of economic growth.

The dominance of the FDI-commensalism category means that many more countries experience

FDI-commensalism than those that experience growth-commensalism – FDI has no effect on growth

but growth has a positive effect on FDI. Only 2 countries experience non-symbiosis – FDI has no effect

on growth and growth has no effect on FDI – which suggests that at least a one-way relationship be-

tween growth and FDI exists in almost all countries. In addition, and in fact, only developing countries

(very few) fall into this latter category, as well as the categories of FDI-antagonistic symbiosis, synner-

crosis and growth-commensalism. In addition, there is no country that experiences FDI-ammensalism

– FDI has no effect on growth and growth has a negative effect on FDI.

5.2 Effect of Institutional Improvement

Recall that for this paper, an improvement in institutional quality means a reduction in the level

of corruption. Figure 2 provides a set of the results of an improvement in institutional quality on

the coefficients in the instrumental variables model. The 45 degree plots show that many of these

effects are significant in the FDI coefficient case, but that many of the growth coefficient partials are

statistically insignificant. However, it is clear that there are subsets of growth coefficient partials that

are negative and positive and significant. Overall, an improvement in institutional quality weakens,

strengthens or has no impact on the interactions between FDI and growth.

5.3 Cross-Validated Bandwidths and Model Specification

One important way we glean additional insight from our model about the nature of parameter hetero-

geneity is to examine the cross-validated bandwidths used for regression estimation. It is becoming

increasingly well known that if a cross-validated bandwidth on a continuous regressor lies below 2

or 3 times the standard deviation of the regressor in a local linear regression, then that variable is

chosen by the cross-validation procedure to enter nonlinearly into the regression model (for details,

see Li & Racine 2007). For discrete variables, a bandwidth that is less than unity implies nonlinear,

nontrivial interactions in the regression. While examining the cross-validated bandwidths does not

amount to a formal model specification test, the bandwidths generate insight into nature of the model

that best fits the data: the cross-validated bandwidths in our model shows that for each environmental

variable – corruption, country effect, and year effect – the best fit of our model to the data is one that

incorporates nonlinear interactive effects. That is, we find that our bandwidths are less than their

upper bounds, which is a signal that any ad hoc parametric linear restriction is not justified by the

data.10 Further, existence of nonlinear interactions does not provide insight into correct parametric

specification; hence our bandwidth analysis signals that parametric restrictions on the functional form

of heterogeneity within our model should be carefully considered and supported by appropriate model

specification tests. We finally note that since the degree of smoothing varies across equations for each

regressor, we conclude that the nature of these nontrivial interactions differs across equations as well.

10See, also, Henderson, Papageorgiou & Parmeter (2012) for a detailed discussion of the implications of cross-validated
bandwidths for model specification in an empirical growth context.
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5.4 Developed versus Developing Countries

Our foregoing empirical results strongly suggest that institutional quality can impinge on the growth-

FDI interactions across countries. In addition, it is well known that developed countries, on average,

have better institutional quality than their developing counterparts. On the basis of such difference in

institutional quality, developed countries that experience symbiosis and FDI-commensalism may have

a natural comparative advantage over their developing counterparts. On the surface, two empirical

regularities – which are not necessarily mutually exclusive – may lend credence to such comparative

advantage. One, there are two main types of FDI that flow to host countries: vertical FDI – investment

that allows for different components of a final good to be produced in different countries with different

factor intensities; and horizontal FDI – investment that allows for the entire production process of a

final good to be replicated in a foreign country that is within close proximity to major foreign markets.

On average, developed host countries receive mostly horizontal FDI, whereas developing host countries

receive mostly vertical FDI. Two, differences in institutional quality is associated with, among other

things, differences in investment climate, factor endowments and thus absorptive capacity, direct and

indirect transaction costs, and organizational structure of firms and industries.

To investigate this concern, we examine whether the conditional densities of the growth and FDI

effects differ between OECD and non-OECD countries using kernel densities and boxplots. In Figure 3,

the top graph shows superimposed kernel density plots of FDI effects (from the growth equation)

for both OECD and non-OECD countries, whereas the bottom graph shows superimposed kernel

density plots of growth effects (from the FDI equation) for both OECD and non-OECD countries. In

Figure 4, the top graph shows boxplots across quartiles of FDI effects for both OECD and non-OECD

countries, whereas the bottom graph shows boxplots across quartiles of growth effects for both OECD

and non-OECD countries. A cursory glance at these graphs suggests a discernible difference in both

sets of growth and FDI effects between OECD and non-OECD countries. However, a formal test

of the difference in densities is warranted prior to drawing inferences from these graphs; we use the

nonparametric kernel-based test for equality of distributions by Li, Maasoumi & Racine (2009) to test

for statistical differences between the OECD and non-OECD distributions of FDI and growth effects.

The application of this nonparametric kernel-based test to our estimated FDI and growth effects

yields p-values of 0.0000 under the null hypothesis of equality of the OECD and non-OECD for both

FDI and growth densities. Thus, we reject the null hypothesis of equality of OECD and non-OECD

distributions for both sets of growth and FDI effects. Therefore, these formal statistical tests confirm

our intuition that OECD and non-OECD countries have statistically different interactions between

FDI and economic growth.

Looking specifically at Figure 3, it is clear that for both FDI and growth effects the distribution

for OECD countries is generally centered at zero, but has a fat right-tail that indicates a subset of

non-zero effects. Non-OECD countries, on the other hand, do not have a large mass at zero for either

FDI or growth effects, and are distributed generally over positive, non-zero values. These differences

suggest that the symbiosis and FDI-commensalism between growth and FDI are not substantial in

many OECD countries. This finding is consistent with our earlier results that indicate an important

interactive relationship between growth, FDI, and institutional quality: countries that have better

institutions, on average, have smaller symbiosis and FDI-commensalism interactions between growth

and FDI. Non-OECD countries, on the other hand, have sizeable symbiosis and FDI-commensalism

interactions; for symbiosis, this indicates that in the absence of high quality institutions, FDI is an

important component for economic growth and economic growth rates are important for attracting
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FDI.

These results have important implications, particularly for developing countries. First, it is clear

that in many developing countries, FDI is a key factor for growth; yet, since growth is crucial for

attracting FDI, it is clear that countries looking to improve growth rates through FDI may not be

successful given that they are not relatively attractive to FDI investors. Improvements in institutional

quality may be one way to circumvent this cycle. Our results also indicate that countries with high

levels of institutional quality (e.g., OECD countries) may not gain much from improving growth rates

by pursuing policies aimed at attracting FDI.

We turn to Figure 4 to focus on the distribution of FDI and growth effects across OECD and non-

OECD countries within each quartile. These boxplots provide an alternative view into the differences

in our estimates across developed and developing countries. The top panel in the figure shows the

distribution of FDI effects in the growth equation across OECD and non-OECD countries; the bottom

panel shows the distributions for the growth effects in the FDI equation. It is clear from the top

panel that the distribution of estimates within the first and third percentile are generally wider for

non-OECD countries, with a wider interquartile range and higher mean for non-OECD countries in

each group. We do not see much difference in FDI effects at the second percentile across OECD

and non-OECD countries, and we see a slightly wider interquartile range for OECD countries at

the highest quartile. Interestingly, we find that the interquartile range is higher, with higher mean

estimate, within each quartile of growth effects (FDI equation) for non-OECD countries. Therefore,

although developed countries may have a natural comparative advantage because of their higher level

of institutional quality, the magnitudes of their symbiosis and FDI-commensalism interactions between

FDI and economic growth are smaller than those of their developing counterparts.

5.5 An Alternative Instrumental Variables Specification

We also estimate a semiparametric system of simultaneous equations model that uses the fertility rate,

which supplants the life expectancy rate, as an instrument for growth in our FDI equation. These

results parallel the preceding reported results that are predicated on the life expectancy rate. That is,

across developed and developing economies, causal, heterogeneous symbiosis and FDI-commensalism

are the most dominant types of interactions between FDI and economic growth. Higher institutional

quality facilitates, impedes, or has no effect on the interactions between FDI and economic growth.

In addition, our out-of-sample goodness of fit measures for this alternative model are lower than their

counterparts in the preceding model; this observation lends credence to the preceding model.

6 Conclusion

In theory, FDI inflows can have positive, negative or no effect on economic growth, and vice versa. If

within a country FDI has a positive effect on growth and growth has a positive effect on FDI – our

concept of symbiosis – then FDI-promoting strategies for fostering and sustaining economic growth

have added and direct multiplier benefits. In such a country, policymakers can therefore reallocate

scarce resources to, for example, other correlates of economic development. To date, however, no

study has analyzed empirically the types of interactions between economic growth and FDI that may

exist within and across countries and the effect of institutional quality on such interactions.

In this paper, we characterize the types of interactions between FDI and economic growth, and

analyze the effect of institutional quality on such interactions. To do so, we propose a novel semipara-
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metric system of simultaneous equations model with the economic growth rate and FDI as a bivariate

response. Our model unifies several important aspects of the empirical growth and FDI literatures,

including (i) the joint determination of economic growth and FDI, (ii) nonlinear and nontrivial inter-

actions of institutional quality with each of the conditioning variables, (iii) an instrumental variables

approach for identification, (iv) unobserved heterogeneity (country- and time-specific effects) of un-

known and non-neutral form, (v) and correlations in errors across equations. Only a few existing

papers have explored a subset of these important model structures.

To estimate the coefficient functions and their derivatives for the proposed bivariate response

growth-FDI model, we derive and establish the large sample properties of a class of semiparametric

system of simultaneous equations estimators. We show using rigorous proof that our class of systems

estimators is both consistent and asymptotically normal. We emphasize that our econometric model

is fully generalizable to J separate equations, and is in no way restricted to the empirical growth-FDI

context in which our model is framed. Our proposed class of systems estimators is a generalization

of several important econometric models, including the fully parametric systems generalized method

of moments estimator, the single-equation nonparametric generalized method of moments estimator,

and the nonparametric system of equations (i.e., without endogeneity) estimators. Our proposed class

of estimators is relatively straightforward to implement and, more important, has a wide range of

applicability to economic and non-economic data.

Our proposed semiparametric system of equations model, and associated specification tools, sug-

gests that across developed and developing economies, causal, heterogeneous (i) symbiosis and (ii)

FDI-commensalism are the most dominant types of interactions between FDI and economic growth;

that is, for a large number of countries either (i) FDI has a positive effect on growth and growth has

a positive effect on FDI, or (ii) FDI has a positive effect on growth but growth has no effect on FDI,

respectively. We further find that higher institutional quality facilitates, impedes or has no effect on

the interactions between FDI and economic growth.

These findings are strong evidence in support of research advocating a more tailored, country-

specific set of macroeconomic policies for the relationship between economic growth and FDI. Ad-

ditionally, we uncover substantial heterogeneity in terms of interactions between our conditioning

variables in each equation and institutional quality and country- and time-specific effects. Is it well-

known that neglected heterogeneity can lead to misleading inferences on the parameters of interest.

Thus, our findings underscore the importance of accounting for different sources of heterogeneities in a

flexible – rather than the traditionally ad hoc parametric – manner to obtain consistent and generally

reliable results. In essence, our new-fangled semiparametric system of simultaneous equations model

coupled with its instrument-based estimator seems appropriate for assessing empirically the types of

interactions between growth and FDI.

Consistent with the parametric GMM toolkit, several theoretical extensions of our framework are

possible. In our current work, we maintain the standard assumptions of (relatively) few instruments

and that the instruments are strong. It would certainly be interesting to develop nonparametric GMM

estimators for system of simultaneous equations with many IVs. A Hansen J-Test for overidentification

in the context of nonparametric GMM models would also be a useful tool.
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Technical Appendix

In this appendix, we assume C ∈ (0,∞) is an arbitrary bounded constant. Recall that n ≡ NT ; we use

these terms interchangeably. The integral symbol represents a multiple integral of varying dimensions

depending on the context in which it is used. We provide the proofs for only Propositions 3.2, 3.3

and 3.9 and Theorem 3.4 because the proofs for Corollary 3.7 and Theorems 3.6 and 3.11 are less

involved. Many of the ensuing proofs use convergence in mean square.

Proof of Proposition 3.2: (i) Note that

S̃n =
1

n

(
Q′1K

1/2
1 DθK

1/2
1 U ′1H

−1
1 Q′1K

1/2
1 DβK

1/2
2 U ′2H

−1
2

Q′2K
1/2
2 DβK

1/2
1 U ′1H

−1
1 Q′2K

1/2
2 DγK

1/2
2 U ′2H

−1
2

)
:=

(
S̃n,11 S̃n,12

S̃n,21 S̃n,22

)
. (A.1)

The proofs for S̃n,11 and S̃n,22 follow directly from Cai and Li (2008) [Proof of Proposition (i)], which

yields S̃n,11 = f̃1(z1)DθS1{1 + oP(1)} and S̃n,22 = f̃2(z2)DγS2{1 + oP(1)}. To complete the proof of

Proposition 3.2, it therefore remains to show that (ia) S̃n,12 = oP(1) and (ib) S̃n,21 = oP(1).

We now prove part (ib); the proof of part (ia) can be easily established using the approach below.

E[S̃n,21] = E

{
1

n

N∑
i=1

T∑
t=1

βQ2,itŨ
′
1,itK

1/2
h1

(Z1,it − z1)K1/2
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}

= βE
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Ω21(z1 + h1c1, z2 + h2c2) Ω21(z1 + h1c1, z2 + h2c2)⊗ c′1

Ω21(z1 + h1c1, z2 + h2c2)
′ ⊗ c1 Ω21(z1 + h1c1, z2 + h2c2)⊗ c1c′1

)
×h−d1/21 h

−d2/2
2 hd11 h

d2
2 K

1/2
1 (c1)K

1/2
2 (c2)f(z1 + h1c1, z2 + h2c2)dc1dc2

= O
(
h
d1/2
1 h

d2/2
2

)
= o(1),

where the second equality is by virtue of Assumption A.1, the fourth equality follows from law of iter-

ative expectations (LIE), the sixth equality uses a change of variable, and the remaining equalities are

consequences of changes in the implied canonical differential form, Lebesgue Dominated Convergence

Theorem, and Assumptions A.2, A.3, and A.5.

We now show that V ar[s̃n,21]→ 0 as Nh
dj
j h

dk
k →∞. We define

s̃rsn,21 :=
1

n

N∑
i=1

T∑
t=1

βW2,itrX̃1,itsK
1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)
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where W2,itr is the r-th element of W2,it and X̃1,its is the s-th element of X̃1,it. Then, by Assump-

tion A.1, we obtain

V ar[s̃rsn,21] = β2
1

NT 2
V ar

{
T∑
t=1

W2,itrX̃1,itsK
1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

}
= V1 + V2,

where V1 =
β2

NT
V ar

{
W2,i1rX̃1,i1sK

1/2
h1

(Z1,i1 − z1)K1/2
h2

(Z2,i1 − z2)

}
,

V2 = β2
2

NT

T−1∑
t=1

(T − t)Cov
(
V21, V2(t+1)

)
,

V21 = W2,i1rX̃1,i1sK
1/2
h1

(Z1,i1 − z1)K1/2
h2

(Z2,i1 − z2),

V2(t+1) = W2,i(t+1)rX̃1,i(t+1)sK
1/2
h1

(Z1,i(t+1) − z1)K
1/2
h2

(Z2,i(t+1) − z2).

Now, by Assumptions A.1 and A.2, and for a fixed T, it is straightforward to show that V1 ≤ C

NTh
d1
1 h

d2
2

.

By similar arguments and using the Cauchy-Schwarz result that |Cov(X,Y )| ≤ V ar(X)V ar(Y ) yield

|V2| ≤ CT

Nh
d1
1 h

d2
2

. Hence, we obtain V ar[s̃rsn,21] = O
((
Nhd11 h

d2
2

)−1)
= o(1) as required. Therefore, we

have

1

n

N∑
i=1

T∑
t=1

βW2,itX̃
′
1,itK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2) = oP(1).

By invoking similar steps to those above, we deduce that

1

n

N∑
i=1

T∑
t=1

βW2,itX̃
′
1,it ⊗ (Z1,it − z1)′/h1 ·K1/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2) = oP(1),

1

n

N∑
i=1

T∑
t=1

βW2,itX̃
′
1,it ⊗ (Z1,it − z1)(Z1,it − z1)′/h21 ·K

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2) = oP(1).

Thus, the proof of part (i) is complete.

(ii) Note that

Bn =
1

n

(
Q′1K

1/2
1 DθK

1/2
1 X̃1R1 +Q′1K

1/2
1 DβK

1/2
2 X̃2R2

Q′2K
1/2
2 DβK

1/2
1 X̃1R1 +Q′2K

1/2
2 DγK

1/2
2 X̃2R2

)
:=

(
Bn,11 +Bn,12

Bn,21 +Bn,22

)
. (A.2)

The proofs for Bn,11 and Bn,22 follow directly from Cai and Li (2008) [Proof of Proposition (ii)], which

yields Bn,11 = (h21/2)f1(z1)B1(z1) + oP(h21) and Bn,22 = (h22/2)f2(z2)B2(z2) + oP(h22). To complete the

proof, it remains to show that (iia) Bn,12 = oP(1) and (iib) Bn,21 = oP(1).

For (iia),

E[Bn,12] = E

{
1

n

N∑
i=1

T∑
t=1

βQ1,itX̃
′
2,itR2(Z2,it − z2)K1/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2)

}
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h−22 E[Bn,12] = Eβ

(
W1,itX̃

′
2,itA2

(
(Z2,it − z2)/h2

)
W1,itX̃

′
2,itA2

(
(Z2,it − z2)/h2

)
⊗ (Z1,it − z1)/h1

)
×K1/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2)

= β

∫ (
Ω12(u1, u2)A2

(
(u2 − z2)/h2

)
Ω12(u1, u2)A2

(
(u2 − z2)/h2

)
⊗ (u1 − z1)/h1

)
×K1/2

h1
(u1 − z1)K1/2

h2
(u2 − z2)f(u1, u2)du1du2

= h
d1/2
1 h

d2/2
2 β

∫ (
Ω12(z1 + c1h1, z2 + c2h2)A2(c2)

Ω12(z1 + c1h1, z2 + c2h2)A2(c2)⊗ c1

)
×K1/2

1 (c1)K
1/2
2 (c2)f(z1 + c1h1, z2 + c2h2)dc1dc2

= O
(
h
d1/2
1 h

d2/2
2

)
.

Thus, E[Bn,12] = O
(
h
d1/2
1 h

(d2+4)/2
2

)
. In addition, any (r, s)-entry of the V ar(Bn,12) converges to zero.

Similarly, for (iib), we can show that E[Bn,21] = O
(
h
(d1+4)/2
1 h

d2/2
2

)
, and any (r, s)-entry of the

V ar(Bn,21) converges to zero. Therefore, Bn,12 = oP(1) and Bn,21 = oP(1), which respectively do not

statistically dominate Bn,11 and Bn,22. Hence, the proof of part (ii) is complete.

(iii) Note that

Rn =
1

n

(
Q′1K

1/2
1 DθK

1/2
1 X̃1R1 +Q′1K

1/2
1 DβK

1/2
2 X̃2R2

Q′2K
1/2
2 DβK

1/2
1 X̃1R1 +Q′2K

1/2
2 DγK

1/2
2 X̃2R2

)
:=

(
Rn,11 +Rn,12

Rn,21 +Rn,22

)
. (A.3)

The proofs for Rn,11 and Rn,22 follow directly from Cai and Li (2008) [Proof of Proposition (iii)],

which yield that Rn,11 = oP(h21) and Rn,22 = oP(h22). To complete the proof, we now show that (iiia)

Rn,12 = oP
(
h
d1/2
1 h

(d2+4)/2
2

)
and (iiib) Rn,21 = oP

(
h
(d1+4)/2
1 h

d2/2
2

)
.

We prove part (iiib); by symmetry, the proof of part (iiia) easily follows.

E[Rn,21] = E
{ 1

n

N∑
i=1

T∑
t=1

βQ2,itX̃
′
1,itR1(Z1,it − z1)K1/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2)

}

h−21 E[Rn,21] = βE

(
W2,itX̃

′
1,it h

−2
1 R1(Z1,it, z1)

W2,itX̃
′
1,it h

−2
1 R1(Z1,it, z1)⊗ (Z1,it − z1)/h1

) )
×K1/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2)

= β

∫ (
Ω21(u1, u2) h

−2
1 R1(u1, z1)

Ω21(u1, u2) h
−2
1 R1(u1, z1)⊗ (u1 − z1)/h1

) )
×K1/2

h1
(u1 − z1)K1/2

h2
(u2 − z2)f(u1, u2)du1du2,

where the last equality is a consequence of LIE. Applying a change of variables, the result that

h−21 R1(z1+c1h1, z1) = o(1), Lebesgue Dominated Convergence Theorem, and Assumptions A.1 to A.3,

we obtain Rn,21 = oP
(
h
(d1+4)/2
1 h

d2/2
2

)
as required. By symmetry, it is straightforward to derive the

result that Rn,12 = oP
(
h
d1/2
1 h

(d2+4)/2
2

)
. Furthermore, any (r, s)-entry of both the V ar(Rn,21) and

V ar(Rn,12) converges to zero. In essence, the terms Rn,11 and Rn,22 stochastically dominate their

counterparts. Therefore, we obtain the desired result.
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Proof of Proposition 3.3: Since E[T ∗n ] = 0, we write nD̃V ar(T ∗n) = nD̃E[T ∗nT
∗
n
′]. Now

E[T ∗nT
∗
n
′] = E

(
T ∗n1T

∗
n1
′ T ∗n1T

∗
n2
′

T ∗n2T
∗
n1
′ T ∗n2T

∗
n2
′

)
, (A.4)

where T ∗n1 =
1

n
Q′1K

1/2
1 DθK

1/2
1 ε1 +

1

n
Q′1K

1/2
1 DβK

1/2
2 ε2 = T ∗n,11 + T ∗n,12,

T ∗n2 =
1

n
Q′2K

1/2
2 DβK

1/2
1 ε1 +

1

n
Q′2K

1/2
2 DγK

1/2
2 ε2 = T ∗n,21 + T ∗n,22.

To prove that

nD̃V ar(T ∗n) = f̃l̃(z)D
2
θγS
∗, (A.5)

we will show that the off-diagonal block terms for E[T ∗nT
∗
n
′] in A.4 are of smaller order than its (1, 1)

and (2, 2) main-diagonal block terms, which are of orders O{(nhd11 )−1} and O{(nhd22 )−1} respectively.

(i) To compute E[T ∗n1T
∗
n1
′], note that

T ∗n1T
∗
n1
′ = T ∗n,11T

∗
n,11
′ + T ∗n,11T

∗
n,12
′ + T ∗n,12T

∗
n,11
′ + T ∗n,12T

∗
n,12. (A.6)

For the first term in (A.6), we have,

E[T ∗n,11T
∗
n,11
′] = V ar(T ∗n,11) = V ar

{
1

n

N∑
i=1

T∑
t=1

θ[Q1,itε1,itKh1(Z1,it − z1)]

}
= V11,1 + V11,2, (A.7)

where V11,1 =
θ2

n
V ar

{
Q1,i1ε1,i1Kh1(Z1,i1 − z1)

}
,

V11,2 = 2
θ2

nT

T−1∑
t=1

(T − t)Cov
(
Q1,i1ε1,i1Kh1(Z1,i1 − z1), Q1,i(t+1)ε1,i(t+1)Kh1(Z1,i(t+1) − z1)

)
.

By Assumptions A.1 and A.2, and invoking similar steps to Cai and Li (2008) [Proof of Proposition

2], we obtain nhd11 V11,1 → θ2f̃1(z1)S
∗
1 and

Cov

(
Q1,i1ε1,i1Kh1(Z1,i1 − z1), Q1,i(t+1)ε1,i(t+1)Kh1(Z1,i(t+1) − z1)

)
= E

{
Q1,i1Q

′
1,i(t+1)ε1,i1ε1,i(t+1)Kh1(Z1,i1 − z1)Kh1(Z1,i(t+1) − z1)

}
→ f1,1(t+1)(z1, z1)

(
G

(11,11)
1,t+1 (z1, z1) 0

0′ G
(11,11)
1,t+1 (z1, z1)⊗ µ1,2(K2

1 )

)
.

Hence, V11,2 = O(n−1) and therefore by virtue of Assumption A.2 we obtain

nhd11 V ar[T
∗
n,11]→ θ2f̃1(z1)S

∗
1 .
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For the second term in (A.6), and using Assumption A.1 we have,

E[T ∗n,11T
∗
n,12
′] =

1

n2
E

N∑
i=1

T∑
t=1

θβ[Q1,itQ
′
1,itε1,itε2,itK

3/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

θβ[Q1,itQ
′
1,isε1,itε2,isKh1(Z1,it − z1)K1/2

h1
(Z1,is − z1)K1/2

h2
(Z2,is − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

θβ[Q1,itQ
′
1,ltε1,itε2,ltKh1(Z1,it − z1)K1/2

h1
(Z1,lt − z1)K

1/2
h2

(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

θβ[Q1,itQ
′
1,lsε1,itε2,lsKh1(Z1,it − z1)K1/2

h1
(Z1,ls − z1)K

1/2
h2

(Z2,ls − z2)]

= O(N−1) = o(1).

To see this observe the following. The third and fourth summands in E[T ∗n,11T
∗
n,12
′] are zero by

Assumption A.1. For the first summand in E[T ∗n,11T
∗
n,12
′], note that

1

n2
E

N∑
i=1

T∑
t=1

θβ[Q1,itQ
′
1,itε1,itε2,itK

3/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)]

=
θβ

n
E

(
W1,itW

′
1,it W1,itW

′
1,it ⊗ (Z1,it − z1)′/h1

W ′1,itW1,it ⊗ (Z1,it − z1)/h1 W1,itW
′
1,it ⊗ (Z1,it − z1)(Z1,it − z1)′/h21

)
×ε1,itε2,itK3/2

h1
(Z1,it − z1)K1/2

h2
(Z2,it − z2)

=
θβ

n

∫ (
Ω12
11(u1, u2) Ω12

11(u1, u2)⊗ (u1 − z1)′/h1
Ω12
11(u1, u2)

′ ⊗ (u1 − z1)/h1 Ω12
11(u1, u2)⊗ (u1 − z1)(u1 − z1)′/h21

)
×K3/2

h1
(u1 − z1)K1/2

h2
(u2 − z2)f(u1, u2)du1du2

= h
−d1/2
1 h

d2/2
2

θβ

n

∫ (
Ω12
11(z1 + h1c1, z2 + h2c2) Ω12

11(z1 + h1c1, z2 + h2c2)⊗ c′1
Ω12
11(z1 + h1c1, z2 + h2c2)

′ ⊗ c1 Ω12
11(z1 + h1c1, z2 + h2c2)⊗ c1c′1/h21

)
×K3/2

1 (c1)K
1/2
2 (c2)f(z1 + h1c1, z2 + h2c2)dc1dc2.

For a fixed T and by invoking Assumptions A.2, A.3 and A.5, this first summand is O(N−1). Similarly,

the second summand in E[T ∗n,11T
∗
n,12
′] is o(1).

For the fourth term in (A.6),

E[T ∗n,12T
∗
n,12
′] = V ar(T ∗n,12) = V ar

{
1

n

N∑
i=1

T∑
t=1

β[Q1,itε2,itK
1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)]

}

=
β2

n
V12,1 + V12,2,

where V12,1 = V ar

(
Q1,i1ε2,i1K

1/2
h1

(Z1,i1 − z1)K1/2
h2

(Z2,i1 − z2)

)
,

V12,2 = 2
β2

nT

T−1∑
t=1

(T − t)Cov
(
Q1,i1ε2,i1K

1/2
h1

(Z1,i1 − z1)K1/2
h2

(Z2,i1 − z2),

Q1,i(t+1)ε2,i(t+1)K
1/2
h1

(Z1,i(t+1) − z1)K
1/2
h2

(Z2,i(t+1) − z2)
)
.
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V12,1 = E

(
Q1,i1Q

′
1,i1ε

2
2,i1Kh1(Z1,i1 − z1)Kh2(Z2,i1 − z2)

)

= E

(
W1,i1W

′
1,i1 W1,i1W

′
1,i1 ⊗ (Z1,i1 − z1)′/h1

W ′1,i1W1,i1 ⊗ (Z1,i1 − z1)/h1 W1,i1W
′
1,i1 ⊗ (Z1,i1 − z1)(Z1,i1 − z1)′/h21

)
×ε22,itKh1(Z1,i1 − z1)Kh2(Z2,i1 − z2)

=

∫ (
Ω22
11(u1, u2) Ω22

11(u1, u2)⊗ (u1 − z1)′/h1
Ω22
11(u1, u2)

′ ⊗ (u1 − z1)/h1 Ω22
11(u1, u2)⊗ (u1 − z1)(u1 − z1)′/h21

)
×Kh1(u1 − z1)Kh2(u2 − z2)f(u1, u2)du1du2

→ f(z1, z2)

(
Ω22
11(z1, z2) 0

0′ Ω22
11(z1, z2)⊗ µ1,2(K1)

)
. (A.8)

Then, for a fixed T , V12,1 = O(N−1) = o(1). In a similar manner, we obtain V12,2 = o(1).

(ii) Note that by symmetry, E[T ∗n1T
∗
n2
′] = E[T ∗n2T

∗
n1
′]. To compute E[T ∗n1T

∗
n2
′], we use the decom-

position

T ∗n1T
∗
n2
′ = T ∗n,11T

∗
n,21
′ + T ∗n,11T

∗
n,22
′ + T ∗n,12T

∗
n,21
′ + T ∗n,12T

∗
n,22. (A.9)

For the first term in (A.9), and by Assumptions A.1 and A.2,

E[T ∗n,11T
∗
n,21
′] =

1

n2
E

N∑
i=1

T∑
t=1

θβ[Q1,itQ
′
2,itε

2
1,itK

3/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

θβ[Q1,itQ
′
2,isε1,itε1,isKh1(Z1,it − z1)K1/2

h1
(Z1,is − z1)K1/2

h2
(Z2,is − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

θβ[Q1,itQ
′
2,ltε1,itε1,ltKh1(Z1,it − z1)K1/2

h1
(Z1,lt − z1)K

1/2
h2

(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

θβ[Q1,itQ
′
2,lsε1,itε1,lsKh1(Z1,it − z1)K1/2

h1
(Z1,ls − z1)K

1/2
h2

(Z2,ls − z2)]

= O(N−1) = o(1).

Similarly, for the second term in (A.9),

E[T ∗n,11T
∗
n,22
′] =

1

n2
E

N∑
i=1

T∑
t=1

θγ[Q1,itQ
′
2,itε1,itε2,itKh1(Z1,it − z1)Kh2(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

θγ[Q1,itQ
′
2,isε1,itε2,isKh1(Z1,it − z1)Kh2(Z2,is − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

θγ[Q1,itQ
′
2,ltε1,itε2,ltKh1(Z1,it − z1)Kh2(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

θγ[Q1,itQ
′
2,lsε1,itε2,lsKh1(Z1,it − z1)Kh2(Z2,ls − z2)]

= o(1).
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For the third term in (A.9),

E[T ∗n,12T
∗
n,21
′] =

1

n2
E

N∑
i=1

T∑
t=1

β2[Q1,itQ
′
2,itε1,itε2,itKh1(Z1,it − z1)Kh2(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

β2[Q1,itQ
′
2,isε1,isε2,itK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

×K1/2
h1

(Z1,is − z1)K1/2
h2

(Z2,is − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

β2[Q1,itQ
′
2,ltε1,ltε2,itK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

×K1/2
h1

(Z1,lt − z1)K
1/2
h2

(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

β2[Q1,itQ
′
2,lsε1,lsε2,itK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

×K1/2
h1

(Z1,ls − z1)K
1/2
h2

(Z2,ls − z2)]

= o(1).

For the fourth term in (A.9),

E[T ∗n,12T
∗
n,22
′] =

1

n2
E

N∑
i=1

T∑
t=1

βγ[Q1,itQ
′
2,itε

2
2,itK

1/2
h1

(Z1,it − z1)K3/2
h2

(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

βγ[Q1,itQ
′
2,isε2,itε2,isK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)K1/2
h2

(Z2,is − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

βγ[Q1,itQ
′
2,ltε2,itε2,ltK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)K1/2
h2

(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

βγ[Q1,itQ
′
2,lsε2,itε2,lsK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)K1/2
h2

(Z2,ls − z2)]

= o(1).

(iii) To compute E[T ∗n2T
∗
n2
′], note that

T ∗n2T
∗
n2
′ = T ∗n,21T

∗
n,21
′ + T ∗n,21T

∗
n,22
′ + T ∗n,22T

∗
n,21
′ + T ∗n,22T

∗
n,22. (A.10)

For the first term in (A.10), we proceed as follows,

E[T ∗n,21T
∗
n,21
′] = V ar(T ∗n,21) =

1

n2
V ar

{
N∑
i=1

T∑
t=1

βQ2,itε1,itK
1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

}

=
β2

NT 2
V ar

{
T∑
t=1

Q2,itε1,itK
1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

}

=
β2

n
V21,1 + V21,2,
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where V21,1 = V ar

{
Q2,itε1,itK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)

}
,

V21,2 =
β2

nT

T−1∑
t=1

(T − t)Cov
(
Q2,i1ε1,i1K

1/2
h1

(Z1,i1 − z1)K1/2
h2

(Z2,i1 − z2),

Q2,i(t+1)ε1,i(t+1)K
1/2
h1

(Z1,i(t+1) − z1)K
1/2
h2

(Z2,i(t+1) − z2)
)
.

Using the steps in (A.8), we can show that

V21,1 → f(z1, z2)

(
Ω11
22(z1, z2) 0

0′ Ω11
22(z1, z2)⊗ µ2,2(K2)

)
.

Hence, for a fixed T , V21,1 = O(N−1). Similarly, we obtain V21,2 = o(1).

For the second term in (A.10),

E[T ∗n,21T
∗
n,22
′] =

1

n2
E

N∑
i=1

T∑
t=1

βγ[Q2,itQ
′
2,itε1,itε2,itK

1/2
h1

(Z1,it − z1)K3/2
h2

(Z2,it − z2)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

βγ[Q2,itQ
′
2,isε1,itε2,isK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)Kh2(Z2,is − z2)

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

βγ[Q2,itQ
′
2,ltε1,itε2,ltK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)Kh2(Z2,lt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

βγ[Q2,itQ
′
2,lsε1,itε2,lsK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)Kh2(Z2,ls − z2)]

= o(1).

For the fourth term in (A.10),

E[T ∗n,22T
∗
n,22
′] = V ar(T ∗n,22) =

1

n2
V ar

{
N∑
i=1

T∑
t=1

γ[Q2,itε2,itKh2(Z2,it − z2)]

}
.

Similar to the above proof of E[T ∗n,11T
∗
n,11
′], we can easily show that

nhd22 V ar(T
∗
n,22)→ γ2f̃2(z2)S

∗
2 .

In essence, the off-diagonal block terms for E[T ∗nT
∗
n
′] in A.4 are of smaller order than its (1, 1) and (2, 2)

main-diagonal block terms, which are of orders O{(nhd11 )−1} and O{(nhd22 )−1} respectively. Therefore,

this completes the proof of Proposition 3.3.

Proof of Theorem 3.4: We apply the Cramér-Wold device to assist in establishing asymptotic nor-

mality, given the multivariate nature of our semiparametric system estimator. We introduce some
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additional notations for ease of exposition. We define

Ã−1it :=

(
K

1/2
h1

(Z1,it − z1) 0

0 K
1/2
h2

(Z2,it − z2)

)(
θ β

β γ

)(
K

1/2
h1

(Z1,it − z1) 0

0 K
1/2
h2

(Z2,it − z2)

)

=

(
θKh1(Z1,it − z1) βK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2)
βK

1/2
h1

(Z1,it − z1)K1/2
h2

(Z2,it − z2) γKh2(Z2,it − z2)

)

For any λ ∈ Rl̃ such that ‖λ‖ = 1, we set ηit = λ′D̃1/2QitÃ
−1
it εit, where Qit = block diag(Q1,it, Q2,it)

and εit = (ε1,it, ε2,it)
′ for i = 1, . . . , N and t = 1, . . . , T . Thus, we have

n1/2λ′D̃1/2T ∗n =
1√
n

N∑
i=1

T∑
t=1

ηit.

By Assumption A.2 and Proposition 3.3, and for any i = 1, . . . , N and t = 1, . . . , T , we obtain

V ar(ηit) = η2(z)
(
1 + o(1)

)
, and

T∑
t=2

∣∣Cov(ηi1, ηit)
∣∣ = o(1),

where η2(z) := λ′f̃(z)D2
θγS
∗λ. Thus, V ar(n1/2λ′D̃1/2T ∗n) = η2(z)

(
1 + o(1)

)
.

Continuing in this way, it remains to show that the Lyapounov condition holds. This is easily

achieved by invoking the stipulated assumptions, Minkowski’s inequality and similar steps to Proof of

Theorem 2 in Cai & Li (2008).

Proof of Proposition 3.9: Note that

S̃n =
1

n

(
Q′1KŨ1 0

0′ Q′2KŨ2

)
:=

(
S̃n,11 0

0′ S̃n,22

)
, (A.11)

Bn =
1

n

(
Q′1KX̃1R̄1

Q′2KX̃2R̄2

)
:=

(
Bn,11

Bn,22

)
, (A.12)

Rn =
1

n

(
Q′1KX̃1R1

Q′2KX̃2R2

)
:=

(
Rn,11

Rn,22

)
, (A.13)

T ∗n =
1

n

(
Q′1Kε1

Q′2Kε2

)
:=

(
T ∗n,1
T ∗n,2

)
. (A.14)

Then E[S̃n], E[Bn], and E[Rn] follow directly from the results in Cai & Li (2008), and we have the

desired result for (i), (ii) and (iii) of Proposition 3.9. For Proposition 3.9 (iv), note that

V ar(T ∗n) = E

(
T ∗n,1T

∗
n,1
′ T ∗n,1T

∗
n,2
′

T ∗n,2T
∗
n,1
′ T ∗n,2T

∗
n,2
′

)
, (A.15)

and T ∗n,1T
∗
n,1
′ = 1

n2Q
′
1Kε1ε

′
1KQ1, T

∗
n,1T

∗
n,2
′ = 1

n2Q
′
1Kε1ε

′
2KQ2, and T ∗n,2T

∗
n,2
′ = 1

n2Q
′
2Kε2ε

′
2KQ2. Using

the results in Cai & Li (2008), it is easy to show that

nhdE[T ∗n,1T
∗
n,1
′] = f(z)S∗1 and nhdE[T ∗n,2T

∗
n,2
′] = f(z)S∗2 .
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Thus, it suffices to show that the off-diagonal block terms in (A.15) are also of the order of magnitude

n−1h−d. We only consider the (1,2) block-entry in (A.15), as the result for the (2,1) block-entry will

follow by virtue of symmetry. To begin, we express E[T ∗n,1T
∗
n,2
′] as

E[T ∗n,1T
∗
n,2
′] =

1

n2
E

N∑
i=1

T∑
t=1

[Q1,itQ
′
2,itε1,itε2,itK

2
h(Zit − z1)]

+
1

n2
E

N∑
i=1

T∑
t6=s=1

[Q1,itQ
′
2,isε1,itε2,isKh(Zit − z1)Kh(Zis − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t=1

[Q1,itQ
′
2,ltε1,itε2,ltKh(Zit − z1)Kh(Zlt − z2)]

+
1

n2
E

N∑
i 6=l=1

T∑
t6=s=1

[Q1,itQ
′
2,lsε1,itε2,lsKh(Zit − z1)Kh(Zls − z2)]. (A.16)

The third and fourth terms in (A.16) are zero by Assumption A.1. For the first term in (A.16), we

have

1

n2
E

N∑
i=1

T∑
t=1

[Q1,itQ
′
2,itε1,itε2,itK

2
h(Zit − z1)]

=
1

n
E[Q1,itQ

′
2,itε1,itε2,itK

2
h(Zit − z1)]

=
1

n
E

(
W1W

′
2 W1W

′
2 ⊗ (Z − z)′/h

W2W
′
1 ⊗ (Z − z)/h W1W

′
2 ⊗ (Z − z)(Z − z)′/h2

)
ε1ε2K

2
h(Z − z)

=
1

n
E

(
Ω12
12(Z) Ω12

12(Z)⊗ (Z − z)′/h
Ω12
12(Z)′ ⊗ (Z − z)/h Ω12

12(Z)⊗ (Z − z)(Z − z)′/h2

)
K2
h(Z − z)

=
1

n

∫ (
Ω12
12(u) Ω12

12(u)⊗ (u− z)′/h
Ω12
12(u)′ ⊗ (u− z)/h Ω12

12(u)⊗ (u− z)(u− z)′/h2

)
K2
h(u− z)f(u)du

= → 1

nhd
f(z)

(
Ω12
12(z)ν0 0

0′ Ω12
12(z)⊗ µ2(K2)

)
:=

1

nhd
S∗12

Hence, this completes the proof of Proposition 3.9.

Proof of Theorem 3.11: This is straightforward given the above results in the proofs of Theorem 3.4

and Proposition 3.9, and the results in Cai & Li (2008).
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Figure 1: Significance plots for FDI inflows and growth coefficient functions for the model with
instrumental variables.
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Figure 2: Significance plots for the partial effect of FDI inflows and growth coefficient functions with
respect to corruption for the model with instrumental variables.
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Figure 3: Kernel density plots of FDI inflows and growth coefficient function estimates for OECD and
non-OECD countries based on the model with instrumental variables.
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Figure 4: Box plots across quartiles of FDI inflows and growth coefficient function estimates for OECD
and non-OECD countries based on the model with instrumental variables.
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Table 1: Characterizing the Types of Interactions between Economic Growth and FDI

Growth Effect

Positive Negative Zero

FDI Effect

Positive Symbiosis:
63 countries
(45 distinct)

FDI-Antagonistic
Symbiosis:
3 countriesd

FDI-Commensalism:
37 countries
(21 distinct)

Negative Growth-
Antagonistic
Symbiosis:
11 countries
(5 distinct)

Synnercrosis:
3 countriesd

(1 distinct)

Growth-
Ammensalism:
4 countries
(3 distinct)

Zero Growth-
Commensalism:
1 countryd

(not distinct)

FDI-Ammensalism:
No Countries

non-Symbiosis:
2 Countriesd

1. To characterize the types of interactions between growth and FDI on the basis of the taxonomy
in Definition 2.1, we use the following criterion: a country is placed in the category, for example,
symbiosis if at least 50 percent of its estimated effects of FDI on growth and its estimated effects
of growth on FDI is positive and statistically significant at least at the 5% level.
2. d are cells with only developing countries.
3. distinct refers to countries that exhibit only one type of interaction on the basis of our criterion.
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